Головоломка Галантерейщика

Много попыток было предпринято, чтобы побудить Галантерейщика предложить компании какую-нибудь головоломку, но они долго оставались безуспешными. Наконец на одной из стоянок Галантерейщик сказал, что покажет всем нечто, отчего "их мозги перекрутятся, как веревка от колокола". Кстати, он сыграл с компанией шутку, ибо сам не знал ответа на головоломку, которую предложил. Достав кусок материи в форме правильного равностороннего треугольника, он сказал:


- Есть ли среди вас кто-нибудь, кому приходилось раскраивать материю? Побожусь, что нет. Каждый умеет что-то свое, и школяр может чему-нибудь поучиться у простолюдина, а мудрец у дурака. Покажите мне, если умеете, каким образом этот кусок материи можно разрезать на четыре части так, чтобы потом из них удалось составить правильный квадрат.
Некоторые из наиболее образованных паломников сумели сделать это с пятью частями, но не с четырьмя. Но когда они насели на Галантерейщика, требуя от него правильного ответа, он после долгих увиливаний признался, что не умеет решать эту задачу ни для какого числа частей.
- Клянусь святым Франциском, - сказал он, - каждый мошенник, думается мне, может придумать головоломку, но она хороша для тех, кто умеет ее решать.
После этих слов он едва унес ноги. Но самое странное - это то, что, как я выяснил, задачу действительно можно решить для случая четырех частей, не переворачивая части другой стороной вверх. Задачу решить непросто, но, я думаю, читатель найдет ее одной из самых интересных.

Ответ

На рисунке показано, каким образом треугольный кусок материи можно разрезать на 4 части, из которых затем удается сложить правильный квадрат. Разделим АВ пополам в точке D, а ВС в точке Е. Продолжим прямую АЕ до точки F так, чтобы EF равнялось ЕВ. Разделим пополам AF в точке G и проведем дугу AHF. Продолжим ЕВ до точки H; ЕН как раз и равно стороне искомого квадрата. Из Е как из центра радиусом ЕН опишем дугу HJ и отложим отрезок JK, равный BE. Теперь из точек D и К опустим перпендикуляры на EJ с основаниями в точках L и М. Если вы все это проделаете аккуратно, то и получите отрезки, вдоль которых следует провести разрезы.


Я выступал с этой задачей, поставленной в более общей форме, перед Королевским обществом в Берлингтон-Хауз, а также в Королевском институте. Эта задача была также предложена читателям газеты "Дейли мейл" (выпуски от 1 и 8 февраля 1905 г.), но среди сотен ответов не было ни одного правильного. Исключение составил лишь ответ К. У. М'Елроя.


Я добавил еще один рисунок, на котором решение задачи показано в более любопытной и удобной для практики форме. Все части модели можно сделать из красного дерева, скрепив их бронзовыми шарнирами, дабы ее удобно было показывать в аудитории. Легко заметить, что все четыре части образуют нечто вроде цепочки. Если закрутить эту цепочку в одном направлении, то получится треугольник, а если ее закрутить в противоположную сторону, то получится квадрат.