Узелок III.1. - Безумная Математильда


Два путешественника садятся на поезда, идущие в противоположных направлениях по одному и тому же замкнутому маршруту и отправляющихся в одно и то же время. Поезда отходят от станции отправления каждые 15 минут в обоих направлениях. Поезд, идущий на восток, возвращается через 3 часа, поезд, идущий на запад,— через 2. Сколько поездов встретит каждый из путешественников в пути (поезда, которые отбывают со станции отправления и прибывают на нее одновременно с поездом, которым следует путешественник, встречными не считаются)?

предыдущая "Л.Кэррол - Истории с узелками" следующая

Решение

С момента отправления до возвращения в исходный пункт у одних поездов проходит 180 минут, у других — 120 Возьмем наименьшее общее кратное 180 и 120 (оно равно 360) и разделим весь маршрут на 360 частей (будем называть каждую часть просто единицей). Тогда поезда, идущие в одном направлении, будут следовать со скоростью 2 единицы в минуту, а интервал между ними будет составлять 30 единиц. Поезда, идущие в другом направлении, будут следовать со скоростью 3 единицы в минуту, а интервал между ними будет равен 45 единицам. В момент отправления восточного поезда расстояние между ним и первым встречным поездом составляет 45 единиц. Восточный поезд проходит 2/5 этого расстояния, встречный — остальные 3/6, после чего они встречаются в 18 единицах от станции отправления. Все последующие поезда восточный поезд встречает на расстоянии 18 единиц от места предыдущей встречи. В момент отправления западного поезда первый встречный поезд находится от него на расстоянии 30 единиц. Западный поезд проходит 3/5 этого расстояния, встречный — остальные 2/5, после чего они встречаются на расстоянии 18 единиц от станции отправления. Каждая последующая встреча западного поезда с восточными происходит на расстоянии 18 единиц от места предыдущей встречи. Следовательно, если вдоль всего замкнутого маршрута мы расставим 19 столбов, разделив его тем самым на 20 частей по 18 единиц в каждой, то поезда будут встречаться у каждого столба.

Ответ

В данном случае каждый путешественник, вернувшись на станцию отправления, проедет мимо 19 столбов, а значит, встретит 19 поездов.