ЗАДАЧИ НА ЛОГИКУ И СМЕКАЛКУ

Задачи Кентерберийские по рейтингу




Головоломка Эконома

   "Удачливый во всем судейского подворья Эконом", который присоединился к компании паломников, был на редкость ловким и умным человеком. "В его подворье тридцать клерков жили, И хоть меж них законоведы были... Мог Эконом любого околпачить, Хоть научились люд они дурачить".
Случилось, что во время одной из остановок Мельник и Ткач сели перекусить. Мельник достал пять караваев хлеба, а ткач - три. Эконом попросил разрешения разделить с ними трапезу. Наевшись, он выложил восемь монет и сказал с легкой улыбкой:
- Решите между собой, как справедливо разделить эти деньги. Это как раз головоломка для вашего ума.


Последовал оживленный спор, к которому присоединились почти все паломники. Мажордом и Пристав стояли на том, что Мельник должен получить пять монет, а Ткач - три, простоватый Пахарь предлагал явную нелепость - чтобы Мельник получил семь, а Ткач только одну монету, тогда как Плотник, Монах и Повар считали, что монеты следует поделить поровну. Яростно выдвигались и другие предложения, пока наконец все не решили спросить у Эконома, как мастака в таких вопросах, что бы сделал он сам. Решение Эконома было совершенно справедливым. В чем оно состояло? Разумеется, все трое съели одинаковые порции хлеба.
Ответ    

Головоломка Чосера

   Чосер сам сопровождал паломников. Будучи математиком и человеком вдумчивым, он чаще всего ехал молча, занятый своими мыслями. "Зачем на всех глядишь, приятель, косо И едешь так, уставясь в землю носом?" - поднял его на смех Трактирщик. На просьбу рассказать историю поэт ответил длинной и неуклюжей поэмой, пародирующей рыцарские романы того времени. После двадцати четырех стихов компания отказалась слушать ее дальше и потребовала рассказа в прозе. Интересно, что в "Пролог Священника" Чосер на самом деле ввел небольшую астрономическую задачу. На современном языке она звучит примерно так:


"Солнце спустилось с южного меридиана так низко, что, на мой взгляд, оно находилось не более чем в двадцать девятом градусе. Я подсчитал, что было около четырех часов пополудни, поскольку при моем росте в шесть футов моя тень достигала примерно одиннадцати футов. В то же время высота луны (она находилась в средней фазе), когда мы вступили на западную окраину деревни, все возрастала". Если бы читатель взял на себя труд вычислить местное время, то с точностью до минуты оно равнялось бы 3 ч 58 мин, а день года по новому стилю был 22 или 23 апреля. Это свидетельствует о точности Чосера, поскольку в первой же строке "Рассказов" упоминается о том, что паломничество совершалось в апреле. По-видимому, они выехали 17 апреля 1387 г., как и утверждалось в головоломке 23.
Хотя Чосер придумал эту маленькую головоломку и записал ее для своих читателей, он не предлагал ее своим приятелям-паломникам. Головоломка же, которую он им предложил, была гораздо проще - ее можно было бы назвать географической.
- Когда в 1372 году, - сказал он, - я был отправлен в Италию в качестве посла нашего государя, короля Эдуарда III, то посетил Франческо Петрарку. Прославленный поэт взял меня с собой на прогулку к вершине одной горы. К моему великому удивлению, он мне продемонстрировал, что на вершине горы в кружку вмещается меньше жидкости, чем ее вмещалось в долине. Прошу вас, скажите, что бы это могла быть за гора с таким странным свойством?
Элементарное знакомство с географией поможет правильно ответить на этот вопрос.
Ответ    

Великий диспут между Кармелитом и Приставом церковного суда

   Чосер сообщает о том прискорбном факте, что гармония паломничества время от времени нарушалась ссорами между Кармелитом и Приставом церковного суда. Однажды последний пригрозил даже: "Свою побереги, приятель, кожу. И ты, монах, мне можешь плюнуть в рожу, Когда о братьях истины позорной Всем не раскрою я до Сиденборна", но здесь вмешался до- стойный Трактирщик и временно восстановил мир. К несчастью, ссора вспыхнула снова во время одного весьма любопытного диспута. Дело было так.


В одном месте путь паломников должен был пролечь вдоль двух сторон квадратного поля, и кое-кто из паломников настаивал, чтобы, не обращая внимания на заграждения, двигаться из одного угла поля в другой, как они и делают это на рисунке. И тут Кармелит поразил всю компанию, заявив, что нет нужды нарушать заграждения, ибо и при том, и при другом способе придется преодолеть в точности одинаковые расстояния.
- Клянусь небом, - воскликнул Пристав, - ты сущий болван!
- Ничего подобного, - ответил Кармелит, - если только все выслушают меня терпеливо, то я докажу, что это ты болван, ибо твой мозг слишком скуден для того, чтобы показать, что диагональ квадрата меньше двух его сторон.


Если читатель обратится к приведенному здесь рисунку, то ему легче будет следить за аргументами Кармелита. Предположим, что сторона поля равна 100 ярдам; тогда расстояние вдоль двух сторон от А до В и от В до С равно 200 ярдам. Кармелит взялся доказать, что расстояние по диагонали от А до С также равно 200 ярдам. Если мы будем двигаться вдоль пути, показанного на рис. 1, то, очевидно, пройдем то же расстояние, ибо длина каждого из восьми прямых участков равна в точности 25 ярдам. Аналогично зигзаг на рис. 2 состоит из 10 прямых участков, по 20 ярдов в каждом; значит, весь путь равен 200 ярдам. Не важно, сколько прямолинейных участков будет в нашем зигзаге; результат, совершенно ясно, будет тем же самым. Так, на рис. 3 "ступеньки" очень малы, и все же расстояние равно 200 ярдам. То же происходит на рис. 4 и будет происходить даже в том случае, когда "ступеньки" мы сможем различить лишь под микроскопом. Продолжая этот процесс дальше, говорил Кармелит, мы будем выпрямлять наш зигзагообразный путь до тех пор, пока он не превратится в совершенно прямую линию; а отсюда следует, что длина диагонали квадрата равна сумме длин двух его сторон.
Но это заведомо ложное утверждение; его абсурдность мы можем проверить с помощью непосредственного измерения, если у нас остаются какие-то сомнения. И все же Пристав ни за что не мог опровергнуть Кармелита, отчего пришёл в такую ярость, что, не вмешайся другие паломники, дело кончилось бы дракой. Быть может, читатель сразу обнаружит слабое место в рассуждениях Кармелита?
Ответ    

Головоломка Красильщика

   Чосер упоминает среди паломников и Красильщика, хотя больше ничего не говорит о нем, но, очевидно, до него просто не дошел черед - ведь "Рассказы" остались незаконченными. Так вот и от Красильщика компания долго не могла услышать головоломки. Бедняга пытался последовать примеру своих приятелей Обойщика, Ткача и Галантерейщика, но нужная идея все не посещала его голову, а бесплодные усилия изнуряли мозг. Однако все приходит к тому, кто терпелив, и однажды утром в состоянии крайнего возбуждения он объявил, что собирается задать паломникам одну задачку. Красильщик вытащил квадратный кусок шелковой ткани, на котором были изображены расположенные рядами лилии, - вы видите его на рисунке.
- Лорды, - сказал Красильщик, - послушайте мою загадку. С тех пор, как я проснулся на заре от крика петухов (чтоб нашему хозяину было пусто за этот шум!), я все ищу на нее ответа, но, клянусь святым Бернардом, так и не нашел. На этом куске ткани изображены 64 лилии, а вы скажите, как мне удалить шесть лилий, чтобы при этом в каждом вертикальном и горизонтальном ряду осталось по-прежнему четное число цветов.


Красильщик был ошеломлен, когда каждый из присутствующих показал, как это сделать, причем все - по-разному. Но тут заметили, что славный Оксфордский студент что-то шепнул Красильщику, и тот поспешил добавить:
- Постойте, господа хорошие! Я еще не все сказал. Вы должны определить, сколькими разными способами это можно сделать!
Все согласились, что это совсем другое дело. И только несколько человек из всей компании дали правильный ответ.
Ответ    

Головоломка Галантерейщика

   Много попыток было предпринято, чтобы побудить Галантерейщика предложить компании какую-нибудь головоломку, но они долго оставались безуспешными. Наконец на одной из стоянок Галантерейщик сказал, что покажет всем нечто, отчего "их мозги перекрутятся, как веревка от колокола". Кстати, он сыграл с компанией шутку, ибо сам не знал ответа на головоломку, которую предложил. Достав кусок материи в форме правильного равностороннего треугольника, он сказал:


- Есть ли среди вас кто-нибудь, кому приходилось раскраивать материю? Побожусь, что нет. Каждый умеет что-то свое, и школяр может чему-нибудь поучиться у простолюдина, а мудрец у дурака. Покажите мне, если умеете, каким образом этот кусок материи можно разрезать на четыре части так, чтобы потом из них удалось составить правильный квадрат.
Некоторые из наиболее образованных паломников сумели сделать это с пятью частями, но не с четырьмя. Но когда они насели на Галантерейщика, требуя от него правильного ответа, он после долгих увиливаний признался, что не умеет решать эту задачу ни для какого числа частей.
- Клянусь святым Франциском, - сказал он, - каждый мошенник, думается мне, может придумать головоломку, но она хороша для тех, кто умеет ее решать.
После этих слов он едва унес ноги. Но самое странное - это то, что, как я выяснил, задачу действительно можно решить для случая четырех частей, не переворачивая части другой стороной вверх. Задачу решить непросто, но, я думаю, читатель найдет ее одной из самых интересных.
Ответ    

Головоломка Священника

   "Священник ехал с ними приходской. Он добр был, беден, изнурен нуждой. Его богатство - мысли и дела, Направленные против лжи и зла. Он человек был умный и ученый, Борьбой житейской, знаньем закаленный". Можно ли лучше сказать о человеке его сана! "Пусть буря, град, любая непогода Свирепствует, он в дальний край прихода Пешком на ферму бедную идет, Когда больной иль страждущий зовет". Именно о таких приходских визитах и шла речь в головоломке Священника. Он показал план части своего прихода, через которую протекала небольшая речка, через несколько сотен миль к югу впадавшая в море. Здесь приведена копия этого рисунка.


- Вот, мои достойные паломники, - сказал Священник, - одна странная головоломка. Обратите внимание, что рукава реки образуют островок, на котором стоит мой собственный скромный домик, а в стороне можно заметить приходскую церковь. Заметьте себе также, что в моем приходе через речку переброшено восемь мостов. По дороге в церковь я хочу посетить нескольких своих прихожан, и, совершая эти визиты, я перехожу только по одному разу через каждый мост. Может ли кто-нибудь из вас найти путь, по которому я иду из дома в церковь, не выходя за пределы прихода? Нет-нет, друзья мои, я не переезжаю через речку на лодке, не переплываю ее и не перехожу вброд; я не прорываю себе ход под землей, как крот, и не перелетаю через речку подобно орлу.
Существует способ, с помощью которого Священник может совершать свое странное путешествие. Сумеет ли читатель найти его? На первый взгляд это кажется невозможным, однако в условиях есть одна брешь, через которую можно добраться до решения.
Ответ    

Головоломка Кармелита

   "Прыткий" Кармелит (Кармелиты - члены ордена нищенствующих монахов. - Примеч. пер.) был веселым малым со сладкой речью и блестящими глазками. "Брат-сборщик был он - важная особа. Такою лестью вкрадчивою кто бы Из братьи столько в кружку мог добыть?.. С приятностью монах исповедал, Охотно прегрешенья отпускал. Епитимья его была легка, Коль не скупилась грешника рука". "Звался он Губертом". Однажды, достав четыре мешочка с деньгами, он сказал:


- Если кармелит-сборщик получит пятьсот серебряных пенни, то скажите, сколькими способами он может разложить их по этим четырем мешочкам?
Славный человек объяснил, что порядок не играет роли (так что размещение 50, 100, 150, 200 считается таким же, как и размещение 200, 50, 100, 150) и что один, два или даже три мешочка могут оставаться пустыми.
Ответ    

Головоломка Сквайра

   "Сквайр (Сквайром во времена Чосера называли оруженосца, который сопровождал рыцаря. - Примеч. пер.) был веселый, влюбчивый юнец лет двадцати, кудрявый и румяный". "Он уже не раз ходил в чужой предел" и в нашем "исто- рическом" паломничестве сопровождал своего отца Рыцаря. Без сомнения, это был человек, которого в более поздние времена непременно назвали бы дэнди, ибо "Страданиями искусных дамских рук Наряд его расшит был, словно луг, И весь искрился дивными цветами. Эмблемами, заморскими зверями. ...Он ярок, свеж был, как листок весенний". На рисунке к задаче 26 вы видите юношу на заднем плане с бумагой в руках - ведь "Умел читать он, рисовать, писать, На копьях биться, ловко танцевать".
И вот Рыцарь поворачивается к нему с вопросом:
- Мой сын, чем это ты там так усердно занимаешься?
- Я думаю, - ответил Сквайр, - как бы мне нарисовать одним росчерком портрет нашего покойного сюзерена, короля Эдуарда III, тому, как он умер, уже десять лет. Головоломка состоит в том, чтобы указать, где росчерк должен начинаться и где он будет заканчиваться. Тому из вас, кто первым мне это скажет, я подарю портрет.


Я привожу здесь копию оригинального рисунка, который выиграл Юрист. Стоит отметить, что паломничество началась из Соуерка 17 апреля 1387 г., а Эдуард III умер в 1377 г.
Ответ    

Головоломка Франклина

   В компании находился и Франклин. "Не знал он отроду, что значит сплин. Не мог бы он на жизнь коситься хмуро - Был в том достойным сыном Эпикура". Это был гостеприимный и щедрый человек: "Всегда его столы для всех накрыты, А повара и вина знамениты". Так повелось, что и в компании паломников он всегда председательствовал за одним из столов.
Однажды в харчевне где-то сразу же за Кентербери компания потребовала от него причитающуюся головоломку. В ответ на это Франклин выставил на стол шестнадцать бутылок с номерами от 1 до 15, однако на последней бутылке был проставлен 0.
- Не иначе как, господа мои, - сказал он, - вам на память пришла сейчас головоломка с магическим квадратом, которую нам задавал этот достойный Оксфордский студент. Но я задам вам другую головоломку, которая может показаться похожей на нее, но на самом деле между ними мало общего. Перед вами выставлено в форме квадрата шестнадцать бутылок, и я прошу вас так переставить их, чтобы они образовали магический квадрат, у которого сумма чисел вдоль каждого из десяти рядов равнялась бы 30. Но помните, что вы можете переставить не более десяти бутылок, ибо в этом случае головоломка становится более хитрой.


Эту небольшую головоломку удобно решать с помощью шестнадцати пронумерованных фишек.
Ответ    

Головоломка Пахаря

   Входивший в компанию пахарь был "Терпеньем, трудолюбием богат, За век свой вывез в поле он навоза Телег немало; зноя иль мороза Он не боялся, скромен был и тих И заповедей слушался святых". Этот скромный человек был смущен предложением задать спутникам задачу - ведь головоломки не для простых умов вроде его, но если они настаивают, то он поведает им о том, что часто обсуждали между собой его умные соседи.


- У одного помещика из той части Суссекса, откуда я приехал, посажено в одном месте шестнадцать прекрасных дубов так, что они образуют двенадцать рядов по четыре дерева в каждом. Однажды мимо проезжал человек большой учености, который сказал, что шестнадцать деревьев можно посадить пятнадцатью рядами по четыре дерева в каждом. Не могли бы вы показать, как это сделать? Многие сомневались, вообще возможно ли это.
На рисунке показан один из многих "двенадцатирядных" способов. А как сделать пятнадцать рядов?
Ответ    


<< Предыдущие | Показано с 1 по 10 из 30 | Следующие >>
Прислать задачку

Полный список задач
Десятка последних:
Елийский дворец
Страшный сон
Остров хамелеонов
Королевская семья
Верный знак
Музыкальный вопрос
Спицы в колеса
Спор из-за цвета
Непромокаемый человек
Добро пожаловать в наш бар!
Семёрка лучших:
Куда делся рубль?
Верный знак
Две трети половины четвёртой части
Страшный сон
Плюс - минус
Странная зима
Кувшинки на пруду
© Дизайн и скрипты
Horus.TheOne
Тута чё-то!